Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675912

RESUMEN

In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/patogenicidad , Virus de la Fiebre Porcina Africana/clasificación , Fiebre Porcina Africana/virología , Porcinos , Vietnam , Viremia , Genoma Viral , Genotipo , Eliminación de Secuencia , Esparcimiento de Virus , Filogenia
2.
Viruses ; 16(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543685

RESUMEN

The early detection of classical swine fever (CSF) remains a key challenge, especially when outbreaks are caused by moderate and low-virulent CSF virus (CSFV) strains. Oral fluid is a reliable and cost-effective sample type that is regularly surveilled for endemic diseases in commercial pig herds in North America. Here, we explored the possibility of utilizing oral fluids for the early detection of CSFV incursions in commercial-size pig pens using two independent experiments. In the first experiment, a seeder pig infected with the moderately-virulent CSFV Pinillos strain was used, and in the second experiment, a seeder pig infected with the highly-virulent CSFV Koslov strain was used. Pen-based oral fluid samples were collected daily and individual samples (whole blood, swabs) every other day. All samples were tested by a CSFV-specific real-time RT-PCR assay. CSFV genomic material was detected in oral fluids on the seventh and fourth day post-introduction of the seeder pig into the pen, in the first and second experiments, respectively. In both experiments, oral fluids tested positive before the contact pigs developed viremia, and with no apparent sick pigs in the pen. These results indicate that pen-based oral fluids are a reliable and convenient sample type for the early detection of CSF, and therefore, can be used to supplement the ongoing CSF surveillance activities in North America.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Porcinos , Animales , Virus de la Fiebre Porcina Clásica/genética , Viremia/diagnóstico , Viremia/veterinaria , Viremia/epidemiología , Brotes de Enfermedades/veterinaria , Vacunación/veterinaria
3.
Viruses ; 15(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38140549

RESUMEN

Classical swine fever (CSF) is a highly contagious transboundary viral disease of domestic and wild pigs. Despite mass vaccination and continuous eradication programs, CSF remains endemic in Asia, some countries in Europe, the Caribbean and South America. Since June 2013, Northern Colombia has reported 137 CSF outbreaks, mostly in backyard production systems with low vaccination coverage. The purpose of this study was to characterize the virus responsible for the outbreak. Phylogenetic analysis based on the full-length E2 sequence shows that the virus is closely related to CSF virus (CSFV) genotype 2.6 strains circulating in Southeast Asia. The pathotyping experiment suggests that the virus responsible is a moderately virulent strain. The 190 nucleotide stretch of the E2 hypervariable region of these isolates also shows high similarity to the CSFV isolates from Colombia in 2005 and 2006, suggesting a common origin for the CSF outbreaks caused by genotype 2.6 strains. The emergence of genotype 2.6 in Colombia suggests a potential transboundary spread of CSFV from Asia to the Americas, complicating the ongoing CSF eradication efforts in the Americas, and emphasizes the need for continuous surveillance in the region.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Porcinos , Animales , Colombia/epidemiología , Filogenia , Sus scrofa , Brotes de Enfermedades , Genotipo
4.
Front Vet Sci ; 10: 1286906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929283

RESUMEN

The ongoing African swine fever (ASF) pandemic continues to have a major impact on global pork production and trade. Since ASF cannot be distinguished from other swine hemorrhagic fevers clinically, ASF-specific laboratory diagnosis is critical. Thus ASF virus (ASFV)-specific monoclonal antibodies (mAbs) are critical for the development of laboratory diagnostics. In this study, we report one ASFV-specific mAb, F88ASF-55, that was generated and characterized. This mAb recognizes the ASFV A137R-encoded protein (pA137R). Epitope mapping results revealed a highly conserved linear epitope recognized by this mAb, corresponding to amino acids 111-125 of pA137R. We explored the potential use of this mAb in diagnostic applications. Using F88ASF-55 as the detection antibody, six ASFV strains were detected in an enzyme-linked immunosorbent assay (ELISA) with low background. In immunohistochemistry (IHC) assays, this mAb specifically recognized ASFV antigens in the submandibular lymph nodes of animals experimentally infected with different ASFV strains. Although not all ASFV genotypes were tested in this study, based on the conserved ASFV epitope targeted by F88ASF-55, it has the potential to detect multiple ASFV genotypes. In conclusion, this newly generated ASFV pA137R-specific mAb has potential value in ASF diagnostic tool development. It can be used in ELISA, IHC, and possibly-immunochromatographic strip assays for ASFV detection. It also suggests that pA137R may be a good target for diagnostic assays to detect ASFV infection.

5.
Viruses ; 15(4)2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-37112895

RESUMEN

African swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs. Based on the partial sequences of the genes B646L (p72) and E183L (p54), the virus responsible for the outbreak was identified as an African swine fever virus (ASFV) p72 genotype II. Here, we report further characterization of ASFV RV502, one of the isolates obtained during the outbreak. The whole genome sequence of this virus revealed a deletion of 6535 bp between the nucleotide positions 11,760-18,295 of the genome, and an apparent reverse complement duplication of the 5' end of the genome at the 3' end. Phylogenetically, ASFV RV502 clustered together with ASFV MAL/19/Karonga and ASFV Tanzania/Rukwa/2017/1 suggesting that the virus responsible for the 2020 outbreak in Nigeria has a South-eastern African origin.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Sus scrofa , Nigeria/epidemiología , Análisis de Secuencia de ADN , Filogenia , Genotipo , Brotes de Enfermedades
6.
Vaccine ; 40(38): 5608-5614, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36008236

RESUMEN

The majority of infectious bursal disease virus (IBDV) strains circulating in the broiler chicken industry in Canada are variant strains (varIBDV). Despite high levels of maternally derived antibodies (MtAb), the circulating varIBDVs can establish infection and cause severe immunosuppression in broiler chicks. The objective of this study was to evaluate circulating varIBDVs as broiler breeder vaccine candidates and investigate their protective efficacy against varIBDV challenge in their progeny chicks. Six groups of breeders (20 females/group) were vaccinated with varIBDV strains, SK09, SK10, SK11, SK12, and SK13 or saline at the age of 13 weeks and antibody response was determined by ELISA at 3-7-, and 20- weeks post-vaccination. We also included commercial chicks for the comparison. Results showed that SK-09 is the most antigenic strain, followed by SK-10, SK-12, and SK-13. In contrast, SK-11 showed the lowest antibody response, and over time, antibody titers steadily decreased. Eggs from breeders were collected at 21-week post-vaccination and incubated to produce their respective progenies. The serum antibody titer in day-old chicks showed a successful MtAb transfer. Progeny chicks (n = 40/group) were orally challenged with varIBDV-SK-09 strain at 6 days of age and serum antibody titer (19 d and 35 d of age), bursa to body weight ratio (19 d and 35 d of age), bursal viral load (9 d and 19 d of age) was examined to assess the protection against IBDV. Following the challenge, we found a significant increase in the antibody titers in MtAb-free and commercial vaccine groups than in the varIBDV groups, both at 19 d and 35 d of age. The BBW ratio and viral load data indicated a significant homologous and heterologous protection against varIBDV-SK-09 challenge by SK-09 and SK-10 MtAbs, respectively. Overall, this study demonstrated the feasibility of developing breeder vaccines using circulating varIBDV as candidate vaccine antigens.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Anticuerpos Antivirales , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinaria , Pollos , Femenino
7.
Poult Sci ; 101(8): 101983, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35793601

RESUMEN

Enterococci and Escherichia coli are opportunistic pathogens of poultry and are associated with embryo and neonatal chick mortality. We have recently demonstrated that 56% of dead broiler chicken embryos in commercial hatcheries in western Canada were due to the coinfection of Enterococcus species and E. coli. The objective of this study was to investigate the host-pathogen interactions of Enterococcus faecalis and E. coli in developing chicken embryos. Embryonating eggs at 12 d of incubation were dipped in a solution of E. faecalis and/or E. coli for 30 s to expose the eggshell to study the migration and colonization of E. faecalis and E. coli in the internal organs of chicken embryos and subsequent neonatal chicken mortality following hatch. A multidrug-resistant E. faecalis isolate from a dead chicken embryo and an E. faecalis isolate from a case of yolk sac infection were able to colonize the internal organs of chicken embryos rapidly compared to an E. faecalis isolate from a healthy chicken without affecting viability or hatchability of embryos. Although E. faecalis colonized internal organs of chicken embryos, no evidence of inflammation of these organs nor the expression of virulence genes of E. faecalis was observed. Although E. faecalis and E. coli alone did not affect the viability of embryos, a significantly high neonatal chicken mortality (27%) was observed following exposure of embryos to both E. faecalis and E. coli. Upregulation of IL-1 and CXCR4 was evident 48 h before peak mortality of neonatal chickens; this could suggest a possible link of cytokine dysregulation to increased mortality in coinfected neonatal chickens. However, further studies are warranted to investigate this issue vis-à-vis coinfection with E. faecalis and E. coli in chicken embryos and neonatal chickens.


Asunto(s)
Coinfección , Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Embrión de Pollo , Pollos , Coinfección/veterinaria , Enterococcus/genética , Enterococcus faecalis/genética , Escherichia coli , Infecciones por Escherichia coli/veterinaria , Óvulo , Virulencia/genética
8.
Viruses ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35062287

RESUMEN

African swine fever (ASF) has spread across the globe and has reached closer to North America since being reported in the Dominican Republic and Haiti. As a result, surveillance measures have been heightened and the utility of alternative samples for herd-level monitoring and dead pig sampling have been investigated. Passive surveillance based on the investigation of dead pigs, both domestic and wild, plays a pivotal role in the early detection of an ASF incursion. The World Organization for Animal Health (OIE)-recommended samples for dead pigs are spleen, lymph nodes, bone marrow, lung, tonsil and kidney. However, obtaining these samples requires opening up the carcasses, which is time-consuming, requires skilled labour and often leads to contamination of the premises. As a result, we investigated the suitability of superficial inguinal lymph nodes (SILNs) for surveillance of dead animals. SILNs can be collected in minutes with no to minimum environmental contamination. Here, we demonstrate that the ASF virus (ASFV) genome copy numbers in SILNs highly correlate with those in the spleen and, by sampling SILN, we can detect all pigs that succumb to highly virulent and moderately virulent ASFV strains (100% sensitivity). ASFV was isolated from all positive SILN samples. Thus, sampling SILNs could be useful for routine surveillance of dead pigs on commercial and backyard farms, holding pens and dead on arrival at slaughter houses, as well as during massive die-offs of pigs due to unknown causes.


Asunto(s)
Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/diagnóstico , Ganglios Linfáticos/virología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Animales , Monitoreo Epidemiológico , Genoma Viral , Bazo/virología , Porcinos
9.
Transbound Emerg Dis ; 68(5): 2867-2877, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34075717

RESUMEN

The sustained spread of African swine fever (ASF) virus throughout much of the world has made ASF a global animal health priority, with an increased emphasis on enhancing preparedness to prevent, detect and respond to a potential outbreak of ASF virus (ASFV). In the event of ASFV entry to the North American swine population, enhanced surveillance and diagnostic testing strategies will be critical to facilitate progressive response and eradication of the disease. Compared to individual animal sampling, pen-based oral fluid collection for active surveillance is a non-invasive alternative that is less resource and time-intensive. To evaluate the feasibility of using rope-based oral fluid for early detection of ASFV, four independent animal experiments were conducted in weaned pigs housed in numbers that mimic the industry settings, utilising either highly virulent ASFV Georgia 2007/1 strain or moderately virulent ASFV Malta'78 strain. Pen-based oral fluid and individual oropharyngeal swabs were collected daily and blood samples from each animal were collected every other day. All samples were subsequently tested for ASFV by real-time PCR. ASFV genome was detected in individual blood samples as early as one day post-infection and detected in oral fluids at low-to-moderate levels as early as 3-5 days post-infection in all four independent experiments. These results suggest that pen-based oral fluid samples may be used to supplement the use of traditional samples for rapid detection of ASFV during ASF surveillance.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/epidemiología , Virus de la Fiebre Porcina Africana/genética , Animales , Brotes de Enfermedades/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Porcinos
10.
Sci Rep ; 11(1): 9028, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907214

RESUMEN

Synthetic CpG-ODNs can promote antimicrobial immunity in neonatal chicks by enriching immune compartments and activating immune cells. Activated immune cells undergo profound metabolic changes to meet cellular biosynthesis and energy demands and facilitate the signaling processes. We hypothesize that CpG-ODNs induced immune activation can change the host's metabolic demands in neonatal chicks. Here, we used NMR-based metabolomics to explore the potential of immuno-metabolic interactions in the orchestration of CpG-ODN-induced antimicrobial immunity. We administered CpG-ODNs to day-old broiler chicks via intrapulmonary (IPL) and intramuscular (IM) routes. A negative control group was administered IPL distilled water (DW). In each group (n = 60), chicks (n = 40) were challenged with a lethal dose of Escherichia coli, two days post-CpG-ODN administration. CpG-ODN administered chicks had significantly higher survival (P < 0.05), significantly lower cumulative clinical scores (P < 0.05), and lower bacterial loads (P < 0.05) compared to the DW control group. In parallel experiments, we compared NMR-based serum metabolomic profiles in neonatal chicks (n = 20/group, 24 h post-treatment) treated with IM versus IPL CpG-ODNs or distilled water (DW) control. Serum metabolomics revealed that IM administration of CpG-ODN resulted in a highly significant and consistent decrease in amino acids, purines, betaine, choline, acetate, and a slight decrease in glucose. IPL CpG-ODN treatment resulted in a similar decrease in purines and choline but less extensive decrease in amino acids, a stronger decrease in acetate, and a considerable increase in 2-hydroxybutyrate, 3-hydroxybutyrate, formic acid and a mild increase in TCA cycle intermediates (all P < 0.05 after FDR adjustment). These perturbations in pathways associated with energy production, amino acid metabolism and nucleotide synthesis, most probably reflect increased uptake of nutrients to the cells, to support cell proliferation triggered by the innate immune response. Our study revealed for the first time that CpG-ODNs change the metabolomic landscape to establish antimicrobial immunity in neonatal chicks. The metabolites highlighted in the present study can help future targeted studies to better understand immunometabolic interactions and pinpoint the key molecules or pathways contributing to immunity.


Asunto(s)
Pollos/inmunología , Pollos/microbiología , Infecciones por Escherichia coli/veterinaria , Metaboloma , Oligodesoxirribonucleótidos/inmunología , Enfermedades de las Aves de Corral/inmunología , Administración por Inhalación , Animales , Bacteriemia/inmunología , Bacteriemia/prevención & control , Bacteriemia/veterinaria , Pollos/sangre , Infecciones por Escherichia coli/sangre , Infecciones por Escherichia coli/inmunología , Inyecciones Intramusculares/veterinaria , Oligodesoxirribonucleótidos/administración & dosificación , Enfermedades de las Aves de Corral/sangre , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control
11.
J Immunol Res ; 2020: 2704728, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411791

RESUMEN

Immunoprotective function of oligodeoxynucleotides containing CpG motifs (CpG-ODN) has been demonstrated in neonatal chickens against common bacterial pathogens such as E.coli and Salmonella sp. Our recent study reported that CpG-ODN administration enriches immune compartments in neonatal chicks. However, a causal relationship between CpG-ODN-induced immune enrichment and protective mechanisms remains unestablished. In this study, we investigated in ovo administered CpG-ODN-mediated immune cell recruitment in the immunological niches in lymphoid (spleen) and nonlymphoid (lungs) organs using various doses of CpG-ODN and examined whether the immunological profiles have any correlation with immunoprotection against E.coli infection. Eighteen-day-old embryonated eggs were injected with either 5, 10, 25, and 50 µg of CpG-ODN or saline (n = ~40 per group). On the day of hatch (72 hr after CpG-ODN treatment), we collected the spleen and lungs (n = 3-4 per group) and examined the recruitment of macrophages/monocytes, their expression of MHCII and CD40, and the number of CD4+ and CD8+ T-cell subsets in the immunological niches in the spleen and lungs using flow cytometry. We observed the dose-dependent recruitment of immune cells, wherein 25 µg and 50 µg of CpG-ODN induced significant enrichment of immunological niches in both the spleen and the lungs. Four days after the CpG-ODN treatment (1-day after hatch), chicks were challenged with a virulent strain of E. coli (1 × 104 or 1 × 105 cfu, subcutaneously). Clinical outcome and mortality were monitored for 8 days postchallenge. We found that both 25 µg and 50 µg of CpG-ODN provided significant protection and reduced clinical scores compared to saline controls against E. coli infection. Overall, the present study revealed that CpG-ODNs orchestrate immunological niches in neonatal chickens in a dose-dependent manner that resulted in differential protection against E. coli infection, thus supporting a cause and effect relationship between CpG-ODN-induced immune enrichment and the antibacterial immunity.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Pollos/inmunología , Escherichia coli/inmunología , Oligodesoxirribonucleótidos/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Animales , Profilaxis Antibiótica/efectos adversos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Pollos/microbiología , Relación Dosis-Respuesta Inmunológica , Escherichia coli/aislamiento & purificación , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología
12.
Sci Rep ; 10(1): 5343, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210244

RESUMEN

The transition to antibiotic-free poultry production in the face of pathogenic threats is a very challenging task. We recently demonstrated that mucosal delivery of CpG-ODN alone by the intrapulmonary route (IPL) has potential as an effective alternative to antibiotics in neonatal chicks against Escherichia coli septicemia. How exactly mucosal delivery of CpG-ODN elicits, protective antibacterial immunity remained poorly understood. In this study, CpG-ODN or saline was delivered via the intrapulmonary route to day-old chicks (n = 80/group) using a compressor nebulizer in an acrylic chamber (1 mg/mL CpG-ODN for 15 minutes). In the first part of the study, two days after mucosal CpG-ODN delivery, 40 chicks from each group were challenged subcutaneously with 1 × 105 cfu (n = 20) or 1 × 106 cfu (n = 20) of E. coli and the mortality pattern was monitored for seven days. We found significantly higher survival, better clinical conditions and lower bacterial loads in chicks that received mucosal CpG-ODN. To explore the mechanisms behind this protective immunity, we first looked at the kinetics of the cytokine gene expression (three birds/ group/ time for 10 time-points) in the lungs and spleens. Multiplex gene analysis demonstrated a significant elevation of pro-inflammatory cytokine genes mRNA in the CpG-ODN group. Interleukin (IL)-1ß robustly upregulated many folds in the lung after CpG-ODN delivery. Lipopolysaccharide-induced tumor necrosis factor (LITAF) and IL-18 showed expression for an extended period in the lungs. Anti-inflammatory cytokine IL-10 was upregulated in both lungs and spleen, whereas IL-4 showed upregulation in the lungs. To investigate the kinetics of immune enrichment in the lungs and spleens, we performed flow cytometry, histology, and immunohistochemistry at 24, 48 and 72 hrs after CpG-ODN delivery. CpG-ODN treated lungs showed a significant enrichment with monocytes/macrophages and CD4+ and CD8+ T-cell subsets. Macrophages in CpG-ODN treated group demonstrated mature phenotypes (higher CD40 and MHCII expression). Importantly, mucosal delivery of CpG-ODN via the intrapulmonary route significantly enriched immune compartment in the spleen as well, suggesting a systemic effect in neonatal chicks. Altogether, intrapulmonary delivery of aerosolized CpG-ODN orchestrates protective immunity against E. coli septicemia by not only enhancing mucosal immunity but also the systemic immune responses.


Asunto(s)
Antiinfecciosos/farmacología , Infecciones por Escherichia coli/inmunología , Oligodesoxirribonucleótidos/farmacología , Enfermedades de las Aves de Corral/inmunología , Aerosoles/administración & dosificación , Aerosoles/química , Animales , Animales Recién Nacidos , Antiinfecciosos/administración & dosificación , Pollos , Citocinas/genética , ADN Bacteriano/química , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Pulmón/efectos de los fármacos , Pulmón/inmunología , Imitación Molecular , Membrana Mucosa , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/química , Enfermedades de las Aves de Corral/microbiología , Sepsis/inmunología , Sepsis/prevención & control , Sepsis/veterinaria , Bazo/efectos de los fármacos , Bazo/inmunología
13.
Int J Vet Sci Med ; 8(1): 9-17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083117

RESUMEN

Antimicrobial resistance (AMR) is a global issue, posing a grave threat to the public, animal, and environmental health. The AMR surveillance at the level of the hatchery is crucial to develop an AMR control strategy in the poultry industry. The objective of this study was to investigate the AMR profiles of bacteria isolated from yolk material of non-viable broiler chicken embryos at hatch from commercial hatcheries in western Canada. Antimicrobial susceptibility testing was done using the Kirby-Bauer disk diffusion method focusing on Escherichia coli (n = 170) and Enterococcus (n = 256) species, which are commonly used as indicators of AMR evolution. E. coli isolates were resistant to tetracycline, ampicillin, amoxycillin-clavulanic acid, triple sulpha, ceftiofur, gentamycin, and spectinomycin at the rate of 52.9%, 50.6%, 40.0% 31.8%, 29.4%, 29.4%, 21.8% respectively. Among those, 37.1% of E. coli were multidrug resistant. The descending order of antimicrobial resistance of E. faecalis was; tetracycline (61.9%), ceftiofur (46.2%), bacitracin (43.9%), erythromycin (31.4%) and tylosin (27.4%). Multidrug resistance was detected in 40.4% of E. faecalis isolates, and 85.7% of E. faecium isolates. To the best of our knowledge, this is the first report on AMR surveillance of non-viable chicken embryos. Overall, the present study revealed that non-viable chicken embryos, an overlooked niche for AMR surveillance, harbour multidrug-resistant E. coli, and enterococci that can be a substantial source of superbugs in the environment. Our data also highlight the urgency of including non-viable chicken embryos in AMR surveillance programme to understand AMR dissemination and its control.

14.
Sci Rep ; 9(1): 341, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674918

RESUMEN

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) induce innate immunity against bacterial infections. Despite recent advances, how CpG-ODN alone protects against bacterial infections remained elusive. Here, we report for the first time, to our knowledge, that CpG-ODN orchestrates anti-microbial protective immunity by inducing a rapid enrichment of various immune compartments in chickens. In this study, eighteen-day-old embryonated eggs were injected with either 50 µg of CpG-ODN or saline (~n = 90 per group). In the first experiment, four days after CpG-ODN treatment, chicks were challenged subcutaneously with a virulent strain of Escherichia coli (E. coli) and mortality was monitored for 8 days. We found significant protection, and reduced clinical scores in CpG-ODN treated chicks. To gain insights into mechanisms of protection induced by CpG-ODN, first we investigated cytokine expression kinetics elicited by CpG-ODN. The spleen and lung were collected from embryos or chicks (n = 3-4 per group) at 10 time points post-CpG-ODN inoculation. Multiplex gene analysis (interleukin (IL)-1, IL-4, IL-6, IL-10, IL-18, interferon (IFN)-γ, IFN-α, and lipopolysaccharide induced tumor necrosis factor (LITAF), revealed a significantly higher expression of pro-inflammatory cytokines following CpG-ODN treatment compared to the saline controls. In our study, LITAF stands out in the cytokine profiles of spleen and lungs, underscoring its role in CpG-ODN-induced protection. The third experiment was designed to examine the effects of CpG-ODN on immune cell populations in spleen, lungs, and thymus. Flow cytometry analysis was conducted at 24, 48 and 72 hrs (thymus only collected at 72 hr) after CpG-ODN administration to examine the changes in CD4+ and CD8+ T-cell subsets, monocyte/macrophage cell populations and their expression of maturation markers (CD40 and CD86). Flow cytometry data indicated a significant enrichment of macrophages, CD4+ and CD8+ T-cell subsets in both spleen and lungs of CpG-ODN treated embryos and chicks. Macrophages in spleen and lungs showed an upregulation of CD40 but not CD86, whereas thymocytes revealed significantly high CD4 and CD8 expression. Overall, the present study has demonstrated that CpG-ODN provides protection in neonatal chicks against E. coli infection not only by eliciting cytokine responses and stimulating immune cells but also through enriching immunological niches in spleen and lungs.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Infecciones por Escherichia coli/prevención & control , Escherichia coli/inmunología , Inmunidad Celular , Inmunidad Innata , Oligodesoxirribonucleótidos/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Animales , Animales Recién Nacidos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Pollos , Citocinas/biosíntesis , Infecciones por Escherichia coli/patología , Citometría de Flujo , Perfilación de la Expresión Génica , Pulmón/patología , Monocitos/inmunología , Enfermedades de las Aves de Corral/patología , Bazo/patología , Análisis de Supervivencia , Timo/patología
15.
Vaccine ; 36(5): 744-750, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29292175

RESUMEN

Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1-7, 8a, 8b, 9-11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 104 TCID50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 106TCID50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log10. Approximately 26 ±â€¯7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 107 TCID50/bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98-100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH.


Asunto(s)
Pollos , Hepatitis Viral Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Hepatitis Viral Animal/inmunología , Hepatitis Viral Animal/mortalidad , Hepatitis Viral Animal/virología , Inmunidad Materno-Adquirida , Inmunización , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/mortalidad , Enfermedades de las Aves de Corral/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Esparcimiento de Virus
16.
Drug Deliv Transl Res ; 7(4): 558-570, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28639138

RESUMEN

Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.


Asunto(s)
Enfermedades de los Animales/prevención & control , Nanoestructuras/administración & dosificación , Vacunas/administración & dosificación , Drogas Veterinarias/administración & dosificación , Administración por Inhalación , Administración Intranasal , Aerosoles/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Ganado , Nanotecnología , Aves de Corral
17.
Vaccine ; 35(20): 2716-2722, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28396209

RESUMEN

Inclusion body hepatitis (IBH) is an economically important diseases in broiler chicken industry. Several serotypes of fowl adenovirus (FAdV) can cause IBH, among them, serotype FAdV-8b is associated with the majority of the IBH cases in Canada. Here, we evaluated FAdV-8b virus-like particles (VLPs) and recombinant FAdV-8b fiber proteins (expressed in E. coli) as potential broiler-breeder vaccines against IBH. For assessing the immunogenicity of vaccines, we investigated both humoral and cellular immunity. The humoral immune response was evaluated by determining total IgY and virus-neutralizing antibody in serum at 14, 28, 35 and 60days post-immunization (dpi). We examined cellular immunity using flow cytometry by determining CD4:CD8 ratio change in peripheral blood after the booster vaccination. The protective effect of vaccines was tested by challenging 14day-old progeny (n=30/group) carrying maternal antibodies (MtAb) by challenging with virulent FAdV-8b virus (1×107 TCID50, FAdV-8b-SK). Although total IgY levels were comparable in all groups, the neutralizing antibody response in broiler-breeders at 35 and 60 dpi was significantly (p<0.05) higher those vaccinated with FAdV-8b VLPs followed by FAdV-8b fiber compared to fiber-knob. Moreover, vaccines comprised of FAdV-8b VLPs and FAdV-8b fiber rather than FAdV-8b fiber-knob efficiently elicited the cell-mediated immune response as evidenced by a statistically significant (p<0.05) CD8+ T-cell proliferative response in broiler-breeders four days after the booster vaccination. Unlike FAdV-8b fiber-knob, FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders were able to transfer a substantial amount (28.4±9%) of MtAb to their progeny. Challenge revealed that MtAb provided 100% and 82.7% protection in progeny hatched from FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders, respectively. Collectively, our data suggest that FAdV-8b subunit vaccine-induced MtAb efficiently protected progeny against clinical IBH and broiler-breeder vaccination with subunit vaccines is a potential approach to protect against IBH.


Asunto(s)
Infecciones por Adenoviridae/veterinaria , Aviadenovirus/inmunología , Proteínas de la Cápside/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Infecciones por Adenoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Aviadenovirus/genética , Relación CD4-CD8 , Linfocitos T CD8-positivos/inmunología , Canadá , Proteínas de la Cápside/genética , Proliferación Celular , Pollos , Inmunoglobulinas/sangre , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
18.
Vaccine ; 35(6): 882-888, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28089549

RESUMEN

Chickens are commonly processed around 35-45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50-60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×103 EID50) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8+ T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of early age varIBDV infection in broilers.


Asunto(s)
Infecciones por Birnaviridae/prevención & control , Pollos/virología , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunación , Vacunas Virales/administración & dosificación , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/biosíntesis , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/patología , Infecciones por Birnaviridae/virología , Bolsa de Fabricio/efectos de los fármacos , Bolsa de Fabricio/inmunología , Bolsa de Fabricio/patología , Bolsa de Fabricio/virología , Embrión de Pollo , Pollos/inmunología , Herpesvirus Meleágrido 1/efectos de los fármacos , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Meleágrido 1/patogenicidad , Virus de la Enfermedad Infecciosa de la Bolsa/efectos de los fármacos , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Enfermedad de Marek/inmunología , Enfermedad de Marek/patología , Enfermedad de Marek/virología , Tamaño de los Órganos/efectos de los fármacos , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Factores de Tiempo , Vacunas Vivas no Atenuadas , Cigoto/efectos de los fármacos
19.
Avian Dis ; 61(4): 503-511, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29337617

RESUMEN

Synthetic oligodeoxynucleotides (ODN) containing unmethylated cytosine phosphodiester guanine (CpG) motifs (CpG-ODN) are effective immunostimulatory agents against a variety of viral, bacterial, and protozoan diseases in different animals including poultry. We have recently demonstrated that in ovo injection of CpG-ODN confers protection in neonatal chickens against bacterial septicemias. The objective of this study was to investigate the effectiveness of needle-free intrapulmonary (IPL) delivery of CpG-ODN microdroplets against Escherichia coli infection in neonatal chicks. In the present study, we used 880 chicks in total keeping 40 chicks per group. Chicks were delivered CpG-ODN or saline by IPL at the day 1 of hatch. Three days later, chicks were challenged with two doses (1 × 104 CFU, n = 20 or 1 × 105 CFU, n = 20) of E. coli. Chicks treated with CpG-ODN by the IPL route had significantly lower clinical signs and bacterial load compared to the group treated with saline ( P < 0.05). CpG-ODN-treated groups were significantly protected against E. coli septicemia. We observed dose- and exposure time-dependent immunoprotective effects of IPL CpG-ODN in chicks. We found that IPL delivery of CpG-ODN can induce protective immunity as early as 6 hr that remains effective at least until day 5 post-treatment. Moreover, there were no adverse effects of IPL delivery of CpG-ODN on growth or mortality up to 42 days of age. Based on these findings, it can be suggested that CpG-ODN delivery by IPL route can be a promising alternative to antibiotics for inducing protective immunity in chicks during the critical first week of neonatal life.


Asunto(s)
Pollos , Infecciones por Escherichia coli/veterinaria , Oligodesoxirribonucleótidos/farmacología , Enfermedades de las Aves de Corral/prevención & control , Sepsis/veterinaria , Aerosoles/administración & dosificación , Animales , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Pulmón , Enfermedades de las Aves de Corral/microbiología , Distribución Aleatoria , Sepsis/microbiología , Sepsis/prevención & control
20.
Avian Dis ; 61(4): 472-480, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29337627

RESUMEN

The emergence of enterococcal infections in neonatal broiler chickens in the poultry industry has become common in many countries, including Canada. The objective of this study was to examine the bacterial infections in nonviable broiler chicken embryos in three western Canadian poultry hatcheries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The pattern of embryo mortality that occurred during incubation and the breakout analysis results were similar in all three hatcheries. The majority of embryo mortality occurred during the late stage of incubation (35.08%), followed by the early stage of incubation (15.35%). The breakout analysis showed that 65.82% of swabs had at least one type of bacterial growth while 34.17% of swabs were negative for bacterial isolation. Of those 65.82% swabs with bacterial growth, 34.3% of swabs yielded a mixed bacterial population while 31.52% yielded one type of bacterial growth. The frequency of bacterial isolation from hatch debris (60%-75%) increased with the age of broiler breeders. MALDI-TOF MS was able to provide genus-level identification of 83.13% of isolates among all bacterial types isolated. MALDI-TOF MS identified Enterococcus and Escherichia coli isolates with 97.18% and 100% accuracy at species level, respectively, whereas Staphylococcus species were identified with 62.59% accuracy. The congruence between MALDI-TOF MS identification and 16S rRNA or cpn60 universal gene target sequencing was 100% or 90%, respectively. Of all bacteria isolated, Enterococcus species (29.71%) were the most prevalent, followed by E. coli (19.46%). About 56% of E. coli-infected samples were coinfected with Enterococcus species. Among all Enterococcus species isolated, Enterococcus faecalis (79.58%) was the most prevalent, followed by Enterococcus faecium (8.1%). Overall, our study showed that Enterococcus-associated embryo mortality was predominant in all three hatcheries investigated and suggests that MALDI-TOF MS technology can be applied to identify bacteria such as Enterococcus species isolated from poultry.


Asunto(s)
Pollos , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Infecciones por Bacterias Grampositivas/veterinaria , Enfermedades de las Aves de Corral/mortalidad , Alberta/epidemiología , Animales , Embrión de Pollo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/mortalidad , Infecciones por Escherichia coli/veterinaria , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/mortalidad , Incidencia , Enfermedades de las Aves de Corral/microbiología , Saskatchewan/epidemiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...